Uniform Bounds for the Number of Rational Points on Hyperelliptic Curves of Small Mordell-weil Rank
نویسنده
چکیده
We show that there is a bound depending only on g, r and [K : Q] for the number of K-rational points on a hyperelliptic curve C of genus g over a number field K such that the Mordell-Weil rank r of its Jacobian is at most g − 3. If K = Q, an explicit bound is 8rg + 33(g − 1) + 1. The proof is based on Chabauty’s method; the new ingredient is an estimate for the number of zeros of an abelian logarithm on a p-adic ‘annulus’ on the curve, which generalizes the standard bound on disks. The key observation is that for a p-adic field k, the set of k-points on C can be covered by a collection of disks and annuli whose number is bounded in terms of g (and k). We also show, strengthening a recent result by Poonen and the author, that the lower density of hyperelliptic curves of odd degree over Q whose only rational point is the point at infinity tends to 1 uniformly over families defined by congruence conditions, as the genus g tends to infinity.
منابع مشابه
Uniform Bounds for the Number of Rational Points on Curves of Small Mordell–weil Rank
Let X be a curve of genus g 2 over a number field F of degree d D ŒF W Q . The conjectural existence of a uniform bound N.g;d/ on the number #X.F / of F rational points of X is an outstanding open problem in arithmetic geometry, known by the work of Caporaso, Harris, and Mazur to follow from the Bombieri–Lang conjecture. A related conjecture posits the existence of a uniform bound Ntors; .g; d/...
متن کاملOn the elliptic curves of the form $ y^2=x^3-3px $
By the Mordell-Weil theorem, the group of rational points on an elliptic curve over a number field is a finitely generated abelian group. There is no known algorithm for finding the rank of this group. This paper computes the rank of the family $ E_p:y^2=x^3-3px $ of elliptic curves, where p is a prime.
متن کاملRational Points on Hyperelliptic Curves: Recent Developments
We give an overview over recent results concerning rational points on hyperelliptic curves. One result says that ‘most’ hyperelliptic curves of high genus have very few rational points. Another result gives a bound on the number of rational points in terms of the genus and the Mordell-Weil rank, provided the latter is sufficiently small. The first result relies on work by Bhargava and Gross on ...
متن کاملComplete characterization of the Mordell-Weil group of some families of elliptic curves
The Mordell-Weil theorem states that the group of rational points on an elliptic curve over the rational numbers is a finitely generated abelian group. In our previous paper, H. Daghigh, and S. Didari, On the elliptic curves of the form $ y^2=x^3-3px$, Bull. Iranian Math. Soc. 40 (2014), no. 5, 1119--1133., using Selmer groups, we have shown that for a prime $p...
متن کاملRational points on Jacobians of hyperelliptic curves
We describe how to prove the Mordell-Weil theorem for Jacobians of hyperelliptic curves over Q and how to compute the rank and generators for the Mordell-Weil group.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013